Quantitative structure-activity relationship (QSAR) analysis is a practical approach by which chemical structure is quantitatively correlated with biological activity or chemical reactivity. Human ABC transporter ABCG2 exhibits broad substrate specificity toward structurally diverse compounds. To gain insight into the relationship between the molecular structures of compounds and the interaction with ABCG2, we have developed an algorithm that analyzes QSAR to evaluate ABCG2-drug interactions. In addition, to support QSAR analysis, we developed a high-speed screening method for analyzing the drug-drug interactions of ABCG2. Based on both experimental results and computational QSAR analysis data, we propose a hypothetical mechanism underlying ABC-mediated drug transport and its interaction with drugs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138955712800493825DOI Listing

Publication Analysis

Top Keywords

qsar analysis
16
quantitative structure-activity
8
structure-activity relationship
8
relationship qsar
8
drug-drug interactions
8
abc transporter
8
transporter abcg2
8
qsar
5
analysis
4
analysis predict
4

Similar Publications

Unlabelled: Parkinson's Disease (PD) is a neurodegenerative disorder that primarily affects persons aged 65 and older. It leads to a decline in motor function as a result of the buildup of abnormal protein deposits called Lewy bodies in the brain. Existing therapies exhibit restricted effectiveness and undesirable side effects.

View Article and Find Full Text PDF

Unlabelled: Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival.

View Article and Find Full Text PDF

The development of chirality descriptors for quantitative chirality structure-activity relationship (QCSAR) modeling has always attracted attention, owing to the importance of chiral molecules in pharmaceutical, agriculture, food, and fragrance industries, and environmental toxicology. The utility of a multidimensional space of novel relative chirality indices (RCIs) in the QCSAR modeling of twenty CCR2 antagonists is reported upon in this paper. The numerical characterization of chirality by the RCI approach gives a large pool of chirality descriptors with different degrees of mutual correlation (the correlation coefficient among the computed descriptors varied from 0.

View Article and Find Full Text PDF

In silico and in vitro assessments of the mutagenicity of the azilsartan photoproduct.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Research & Development, Kongo Chemical Co., Ltd, Himata, Toyama 9300912, Japan.

Photodegradation of azilsartan yields a phenanthridine derivative (APP). We suspected that APP could be a DNA-reactive substance, since many phenanthridine derivatives are mutagenic. In silico quantitative structure-activity relationship analysis indicated potential mutagenicity of APP, due to DNA reactivity at the 6-aminophenanthridine moiety.

View Article and Find Full Text PDF

E-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!