Statin pleiotropy prevents rho kinase-mediated intestinal epithelial barrier compromise induced by Blastocystis cysteine proteases.

Cell Microbiol

Singapore Immunology Network, Biomedical Sciences Institutes, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.

Published: September 2012

Blastocystis is an enteric parasite that causes acute and chronic intestinal infections, often non-responsive to conventional antibiotics. The effects of Blastocystis infections on human epithelial permeability are not known, and molecular mechanisms of Blastocystis-induced intestinal pathology remain unclear. This study was conducted to determine whether Blastocystis species alters human intestinal epithelial permeability, to assess whether these abnormalities are rho kinase (ROCK)-dependent, and to investigate the therapeutic potential of the HMG-CoA reductase inhibitor Simvastatin in altered intestinal epithelial barrier function. The effect of metronidazole resistant (Mz(r)) Blastocystis isolated from a symptomatic patient on human colonic epithelial monolayers (Caco-2) was assessed. Modulation of enterocyte myosin light chain phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, transepithelial resistance, cytoskeletal F-actin and tight junctional zonula occludens-1 (ZO-1) by parasite cysteine proteases were measured in the presence or absence of HMG-CoA reductase and ROCK inhibition. Blastocystis significantly decreased transepithelial resistance, increased epithelial permeability, phosphorylated myosin light chain and reorganized epithelial actin cytoskeleton and ZO-1. These alterations were abolished by inhibition of enterocyte ROCK, HMG-CoA reductase and parasite cysteine protease. Our findings suggest that cysteine proteases of Mz(r) Blastocystis induce ROCK-dependent disruption of intestinal epithelial barrier function and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1. Simvastatin prevented parasite-induced barrier-compromise, suggesting a therapeutic potential of statins in intestinal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2012.01814.xDOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
16
epithelial barrier
12
cysteine proteases
12
epithelial permeability
12
hmg-coa reductase
12
epithelial
8
intestinal infections
8
therapeutic potential
8
barrier function
8
mzr blastocystis
8

Similar Publications

Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases.

Nutrients

December 2024

Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.

Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.

View Article and Find Full Text PDF

The neonatal period is a critical phase for the development of the intestinal immune system, marked by rapid adaptation to the external environment and unique nutritional demands. Breast milk plays a pivotal role in this transition, yet the mechanisms by which it influences neonatal mucosal immunity remain unclear. This review examines the potential mechanisms by which cell-free DNA (cfDNA) in breast milk may impact neonatal immune development, particularly through Toll-like receptor 9 (TLR9) signalling and gut microbiota interactions.

View Article and Find Full Text PDF

Background/objectives: The extracellular calcium-sensing receptor (CaSR) is a multifunctional receptor proposed as a possible drug target for inflammatory bowel disease. We showed previously that CaSR inhibition with NPS 2143, a negative allosteric modulator of the CaSR, somewhat ameliorated the symptoms of chemically induced severe colitis in mice. However, it was unclear whether the potential of CaSR inhibition to reduce colitis may have been overshadowed by the severity of the induced inflammation in our previous study.

View Article and Find Full Text PDF

From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance.

Nutrients

December 2024

Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil.

The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine.

View Article and Find Full Text PDF

Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models.

Microorganisms

December 2024

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China.

Enterotoxigenic (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!