[Roles of glucosinolates in the interrelationships between Brassicaceae plants and insects: a review].

Ying Yong Sheng Tai Xue Bao

State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, Ministry of Agriculture Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: February 2012

Glucosinolates (GS) are the important secondary metabolites of Brassicaceae plants, playing an important role in regulating the interrelationships between Brassicaceae plants and insects. GS can protect Brassicaceae plants against euryphagous herbivorous pests because of the toxicity of GS and their breakdown products. However, oligophagous pests which have evolved manifold metabolic pathways to cope with the defensive compounds depended fully on GS and their volatile breakdown products for host-plant recognition and orientation. The GS ingested by herbivores are also toxic to carnivores, and can directly deter predators. On the other hand, predators and parasitoids are attracted by the volatile breakdown products of GS from the Brassicaceae plants damaged by herbivores. Based on the recent findings, this paper reviewed the defensive function of GS against herbivores, host selection of oligophagous pests, GS metabolic pathways of herbivores, induction of GS by herbivores, and effects of GS on the third tropic level. Future directions and techniques in this research field were also suggested.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brassicaceae plants
20
breakdown products
12
interrelationships brassicaceae
8
plants insects
8
oligophagous pests
8
metabolic pathways
8
volatile breakdown
8
brassicaceae
5
plants
5
herbivores
5

Similar Publications

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures.

Plant Mol Biol

January 2025

Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.

The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.

View Article and Find Full Text PDF

Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response.

Plant Cell Rep

January 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions.

View Article and Find Full Text PDF

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!