Maintenance of membrane function is essential and regulated at the genomic, transcriptional, and translational levels. Bacterial pathogens have a variety of mechanisms to adapt their membrane in response to transmission between environment, vector, and human host. Using a well-characterized model of lipid A diversification (Francisella), we demonstrate temperature-regulated membrane remodeling directed by multiple alleles of the lipid A-modifying N-acyltransferase enzyme, LpxD. Structural analysis of the lipid A at environmental and host temperatures revealed that the LpxD1 enzyme added a 3-OH C18 acyl group at 37 °C (host), whereas the LpxD2 enzyme added a 3-OH C16 acyl group at 18 °C (environment). Mutational analysis of either of the individual Francisella lpxD genes altered outer membrane (OM) permeability, antimicrobial peptide, and antibiotic susceptibility, whereas only the lpxD1-null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. Additionally, growth-temperature analysis revealed transcriptional control of the lpxD genes and posttranslational control of the LpxD1 and LpxD2 enzymatic activities. These results suggest a direct mechanism for LPS/lipid A-level modifications resulting in alterations of membrane fluidity, as well as integrity and may represent a general paradigm for bacterial membrane adaptation and virulence-state adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365160 | PMC |
http://dx.doi.org/10.1073/pnas.1202908109 | DOI Listing |
Biochem Biophys Rep
March 2025
College of Biomedical Sciences, Larkin University, Miami, FL, 33169, USA.
3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized by PAPS synthase (PAPSS) in two steps. In the first step ATP sulfurylase (ATPS) transfers sulfate group onto adenylyl moiety of ATP to form adenosine 5'-phosphosulfate (APS) and PPi. APS-kinase (APSK) then transfers the gamma-phosphoryl from ATP onto 3'-OH of APS to form PAPS and ADP.
View Article and Find Full Text PDFNanotechnology
December 2024
BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn(CO)(OH)microflakes. Cytotoxicity of the microflakes was assessed against murine L929 cell line and rat mature erythrocytes.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Reverse transcription of the retroviral RNA genome into DNA is an integral step during HIV-1 replication. Despite a wealth of structural information on reverse transcriptase (RT), we lack insight into the intermediate states of DNA synthesis. Using catalytically active substrates, and a blot/diffusion cryo-electron microscopy approach, we capture 11 structures encompassing reactant, intermediate and product states of dATP addition by RT at 2.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2024
Department of Chemical Sciences, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe.
The preparation of value-added chemicals from carbon dioxide (CO) can act as a way of reducing the greenhouse gas from the atmosphere. Industrially significant C1 chemicals like methanol (CHOH), formic acid (HCOOH), and formaldehyde (HCHO) can be formed from CO. One sustainable way of achieving this is by connecting the reactions catalyzed by the enzymes formate dehydrogenase (FDH), formaldehyde dehydrogenase (FALDH), and alcohol dehydrogenase (ADH) into a single cascade reaction where CO is hydrogenated to CHOH.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
The photo-enzyme coupling system (PECS) holds immense potential in "green" biomanufacturing, encompassing the realms of pharmaceuticals, fuels, and carbon sequestration. Nevertheless, the intricate nature of enzymes' structures significantly impedes the seamless integration of multiple enzymes in a precise, tandem fashion, with exact control over their distribution, posing a formidable challenge. Herein, it has devised a mesoporous csq-type metal organic framework (Zr-MOF) from meso-tetrakis-(4-((phenyl)ethynyl)benzoate)porphyrin (Por-PTP) and Zr(μ-O)(μ-OH)(OH)(HO)) nodes (Zr clusters), featuring intricate hierarchical hexagonal (5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!