There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M(-3/4), energy use as M(0), and total biomass as M(1/4). Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M(-0.78), total resource use as M(-0.02), and total biomass as M(0.22); (iii) these scaling exponents are very close to the predicted values of M(-3/4), M(0), and M(1/4), respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365202 | PMC |
http://dx.doi.org/10.1073/pnas.1205663109 | DOI Listing |
Conserv Biol
January 2025
Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.
Several legal acts mandate that management agencies regularly assess biological populations. For species with distinct markings, these assessments can be conducted noninvasively via capture-recapture and photographic identification (photo-ID), which involves processing considerable quantities of photographic data. To ease this burden, agencies increasingly rely on automated identification (ID) algorithms.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China.
CuF and LiBOB were co-introduced into polycarbonate-based polymer electrolytes (PVT-CB) to overcome the trade-offs between ionic conduction and interfacial stability, resulting in improved ionic conductivity (8.4 × 10 S cm) and enhanced electrochemical stability (5.04 V Li/Li).
View Article and Find Full Text PDFEcol Evol
January 2025
Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-To-North Water Diversion Project College of Life Sciences, Nanyang Normal University Nanyang China.
Resource availability should have consequences for life-history functions and trade-offs among them because it influences the amounts of resources allocated to different functions. Nutritional status during a key developmental window (sexual maturation) may also have an important impact on life-history functions and such trade-offs. However, less is known about whether and how they interact to influence the resource allocation of individuals.
View Article and Find Full Text PDFFire Ecol
January 2025
Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA USA.
Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!