Low-voltage organic field-effect transistors (OFETs) promise for low power consumption logic circuits. To enhance the efficiency of the logic circuits, the control of the threshold voltage of the transistors are based on is crucial. We report the systematic control of the threshold voltage of electrolyte-gated OFETs by using various gate metals. The influence of the work function of the metal is investigated in metal-electrolyte-organic semiconductor diodes and electrolyte-gated OFETs. A good correlation is found between the flat-band potential and the threshold voltage. The possibility to tune the threshold voltage over half the potential range applied and to obtain depletion-like (positive threshold voltage) and enhancement (negative threshold voltage) transistors is of great interest when integrating these transistors in logic circuits. The combination of a depletion-like and enhancement transistor leads to a clear improvement of the noise margins in depleted-load unipolar inverters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365148PMC
http://dx.doi.org/10.1073/pnas.1120311109DOI Listing

Publication Analysis

Top Keywords

threshold voltage
28
logic circuits
12
voltage electrolyte-gated
8
organic field-effect
8
field-effect transistors
8
control threshold
8
voltage transistors
8
electrolyte-gated ofets
8
voltage
7
threshold
6

Similar Publications

Background: Noninferiority of omitting intraoperative defibrillation threshold (DFT) testing has been documented for transvenous implantable cardioverter defibrillators (ICD) whereas data for the subcutaneous-ICD (S-ICD) regarding the need for DFT testing, especially during S-ICD generator replacement, is not available.

Methods: A total of 112 consecutive patients who underwent S-ICD generator replacement and routine testing were included in this retrospective single-center study and analyzed regarding the outcome of intraoperative DFT.

Results: The majority of patients (87.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF

The Trapping Mechanism at the AlGaN/GaN Interface and the Turn-On Characteristics of the p-GaN Direct-Coupled FET Logic Inverters.

Nanomaterials (Basel)

December 2024

State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.

The trapping mechanism at the AlGaN/GaN interface in the p-GaN high electron mobility transistors (HEMTs) and its impact on the turn-on characteristics of direct-coupled FET logic (DCFL) inverters were investigated across various supply voltages () and test frequencies (). The frequency-conductance method identified two trap states at the AlGaN/GaN interface (trap activation energy - ranges from 0.345 eV to 0.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!