The extraction of uranyl from acidic (HNO(3)) aqueous solutions toward an ionic liquid phase, C(1)-C(4)-imTf(2)N (1-methyl,3-butylimidazolium Tf(2)N), has been investigated as a function of initial acid concentration and ligand concentration for two different extracting moieties: a classical malonamide, N,N'-dimethyl-N,N'-dibutylmalonamide (DMDBMA) and a functionalized IL composed of the Tf(2)N(-) anion and an imidazolium cation on which a malonamide pattern has been grafted (FIL-MA). The extraction mechanism, as demonstrated through the influence of added C(1)-C(4)-imCl or added LiTf(2)N in the aqueous phase, is slightly different between the DMDBMA and FIL-MA extracting agents. Modeling of the extraction data evidences a double extraction mechanism, with cation exchange of UO(2)(2+)versus 2 H(+) for DMDBMA or versus C(1)-C(4) -im(+) and H(+) for FIL-MA at low acidic values, and through anion exchange of [UO(2)(NO(3))(3)](-)versus Tf(2)N(-) for both ligands at high HNO(3) concentrations. The FIL-MA molecule is more efficient than its classical DMDBMA parent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt12421a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!