Naïve CD4+ T cells are highly plastic and can differentiate into discrete lineages with unique functions during an immune response. Once differentiated, helper T cells maintain a stable transcriptional memory of their initial lineage choice and resist redifferentiation. During embryogenesis, de novo DNA methylation operates on the hypomethylated genome of the blastocyst to achieve tissue-specific patterns of gene expression. Similarly, the ifnγ promoter is hypomethylated in naïve T cells, but Th2, Th17, and iTreg differentiation is accompanied by substantial de novo DNA methylation at this locus. To determine whether de novo DNA methylation is required to restrict T helper lineage plasticity, we used mice with T cell-specific deletion of the methyltransferase DNMT3a. Induction of lineage-specific cytokines occurred normally in the absence of DNMT3a, however, DNMT3a-deficient Th2, Th17, and iTreg completely failed to methylate the ifnγ promoter. This was accompanied by an increase in the transcriptionally permissive trimethyl H3K4 mark, and a reduction in inhibitory H3K27 methylation at the ifnγ locus. Failed de novo methylation resulted in failed silencing of the ifnγ gene, as DNMT3a-deficient Th2, Th17, and iTreg cells produced significant levels of IFNγ following restimulation in the presence of IL-12. Therefore, DNMT3a-mediated DNA methylation restricts T helper plasticity by establishing an epigenetically silent chromatin structure at regulatory regions of the ifnγ gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391093PMC
http://dx.doi.org/10.1074/jbc.M111.312785DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
novo dna
16
th2 th17
12
th17 itreg
12
methylation required
8
required restrict
8
restrict helper
8
helper lineage
8
lineage plasticity
8
ifnγ promoter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!