This work aims at establishing a link between process conditions and resulting micromechanical properties for aminoplast core/shell microcapsules. The investigated capsules were produced by the in situ polymerization of melamine formaldehyde resins, which represents a widely used and industrially relevant approach in the field of microencapsulation. Within our study, we present a quantitative morphological analysis of the capsules' size and shell thickness. The diameter of the investigated capsules ranged from 10 to 50 μm and the shell thickness was found in a range between 50 and 200 nm. As key parameter for the control of the shell thickness, we identified the amount of amino resin per total surface area of the dispersed phase. Mechanical properties were investigated using small deformations on the order of the shell thickness by atomic force microscopy with a colloidal probe setup. The obtained capsule stiffness increased with an increasing shell thickness from 2 to 30 N/m and thus showed the same trend on the process parameters as the shell thickness. A simple analytical model was adopted to explain the relation between capsules' geometry and mechanics and to estimate the elastic modulus of the shell about 1.7 GPa. Thus, this work provides strategies for a rational design of microcapsule mechanics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am300273b | DOI Listing |
Sci Rep
December 2024
School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NZ, UK.
Worldwide museums hold collections of eggshells representing material for descriptive studies. However, an obstacle to this is the lack of information about the original contents and weight of the entire egg (W). This study aimed to fill this gap though development of a methodological mechanism for calculating the volume of the egg interior (V), its density (D) and W.
View Article and Find Full Text PDFPol J Vet Sci
June 2024
Elazıg Veterinary Control Institute, Republic of Turkey Ministry of Agriculture and Forestry, 23200, Elazig, Turkey.
This study aimed to evaluate the effects of different dietary supplementation levels with jujube fruit powder on the performance, biochemical parameters, and egg quality characteristics of laying quails. A total of 60 quails (45 days old) were randomly assigned to treatments with different levels of jujube fruit powder: a basal diet (control) and diets supplemented with 5 g/kg (T1), 10 g/kg (T2), with five replicates per treatment (20 quails/treatment and four quails/replicate). The differences between 1-15 and 16-30 days for feed intake (p<0.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.
Novel functional materials possessing the capability to attenuate electromagnetic energy are being increasingly incorporated into home decor as concerns over excessive electromagnetic radiation pollution continue to grow. The properties of magnetism and dielectricity in the flexible peanut shell/CoFeO/reduced graphene oxide/polyvinyl alcohol (PS/CF/(RGO)/PVA) nanocomposites can be finely tuned by adjusting the amount of RGO in the mixture. An examination of the composite's absorption capabilities revealed a direct link between higher RGO content and enhanced absorption.
View Article and Find Full Text PDFChem Rev
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!