We review morphological characters considered important for understanding butterfly phylogeny and evolution in the light of recent large-scale molecular phylogenies of the group. A number of the most important morphological works from the past half century are reviewed and morphological character evolution is reassessed based on the most recent phylogenetic results. In particular, higher level butterfly morphology is evaluated based on a very recent study combining an elaborate morphological dataset with a similar molecular one. Special attention is also given to the families Papilionidae, Nymphalidae and Hesperiidae which have all seen morphological and molecular efforts come together in large, combined works in recent years. In all of the examined cases the synergistic effect of combining elaborate morphological datasets with ditto molecular clearly outweigh the merits of either data type analysed on its own (even for 'genome size' molecular datasets). It is evident that morphology, far from being obsolete or arcane, still has an immensely important role to play in butterfly (and insect) phylogenetics. Not least because understanding morphology is essential for understanding and evaluating the evolutionary scenarios phylogenetic trees are supposed to illustrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.asd.2012.04.006 | DOI Listing |
Naturwissenschaften
January 2025
Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan.
Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic.
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species.
View Article and Find Full Text PDFSci Rep
January 2025
Fugu Energy Investment Group Shagoucha Mining Co., Ltd.,, Fugu, 719000, China.
The formation and development of plastic zone in the surrounding rock is the essence of large deformation damage to the surrounding rock in deep, highly stressed roadway. The -850 m roadway of the Qujiang mine is laid flat longitudinally under the 805 working face and coal pillar, and under the influence of the mining movement of the upper working face and the pre-stressing pressure of the coal pillar, the periphery of the roadway is no longer a pure non-uniform stress field, but a non-uniform stress field with both vertical and horizontal dynamic pressure. Based on the Hoek-Brown strength criterion, the unified strength theory is modified and the nonlinear unified strength theory of rock is established by comprehensively considering the intermediate principal stress, rock properties and rock structure.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India.
Background: Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae).
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan.
Butterfly wing patterns exhibit notable differences between the dorsal and ventral surfaces, and morphological analyses of them have provided insights into the ecological and behavioural characteristics of wing patterns. Conventional methods for dorsoventral comparisons are constrained by the need for homologous patches or shared features between two surfaces, limiting their applicability across species. We used a convolutional neural network (CNN)-based analysis, which can compare images of the two surfaces without focusing on homologous patches or features, to detect dorsoventral bias in two types of intraspecific variation: sexual dimorphism and mimetic polymorphism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!