AI Article Synopsis

  • Malaria is a major public health issue in sub-Saharan Africa, especially in Ethiopia, necessitating the development of early-warning systems through environmental monitoring.
  • Researchers used SARIMA models to analyze the relationship between malaria cases and satellite-derived environmental factors like rainfall and temperature, highlighting specific lag times for their influences.
  • The study found strong correlations between malaria cases and environmental indicators, suggesting that these variables can significantly enhance prediction accuracy for malaria outbreaks in the Amhara region of Ethiopia.

Article Abstract

Background: Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia.

Methods: In this study seasonal autoregressive integrated moving average (SARIMA) models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST), vegetation indices (NDVI and EVI), and actual evapotranspiration (ETa) with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series.

Results: Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa) at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates.

Conclusions: Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public health decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493314PMC
http://dx.doi.org/10.1186/1475-2875-11-165DOI Listing

Publication Analysis

Top Keywords

malaria cases
16
public health
12
malaria
11
malaria epidemics
8
earth-observing sensors
8
remotely sensed
8
sensed environmental
8
cases amhara
8
amhara region
8
sarima models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!