A novel series of benzoxazole-derived S1P(1) agonists were designed based on scaffold hopping molecular design strategy combined with computational approaches. Extensive SAR studies led to the discovery of compound 17d as a selective S1P(1) agonist (over S1P(3)) with high CNS penetration and favorable DMPK properties. 17d also demonstrated in vivo pharmacological efficacy to reduce blood lymphocyte in mice after oral administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.04.095 | DOI Listing |
Cureus
November 2024
Division of Dental Anesthesiology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, JPN.
This study aims to explore the role of sphingosine-1-phosphate (S1P) in peripheral nerve regeneration after injury. S1P is a crucial metabolite involved in cell migration, inflammation, and nerve regeneration. In this research, six-week-old male Sprague-Dawley rats (total n=18) underwent transection of the inferior alveolar nerve (IAN) and were divided into three groups: S1PR agonist (FTY720) (n=6), saline control (n=6), and S1P1R antagonist (n=6).
View Article and Find Full Text PDFJCI Insight
December 2024
Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy.
Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.
View Article and Find Full Text PDFNeurobiol Dis
November 2024
Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain.
Some specific lipid molecules in the brain act as signaling molecules, neurotransmitters, or neuromodulators, by binding to specific G protein-coupled receptors (GPCR) for neurolipids. One such receptor, sphingosine 1-phosphate receptor subtype 1 (S1P), is coupled to G proteins and is involved in cell proliferation, growth, and neuroprotection. S1P constitutes an interesting target for neurodegenerative diseases like multiple sclerosis and Alzheimer's disease (AD), in which changes in the sphingolipid metabolism have been observed.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA. Electronic address:
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice.
View Article and Find Full Text PDFSci Rep
April 2024
Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!