Sphingolipids represent a major class of lipids in which selected family members act as bioactive molecules that control diverse cellular processes, such as proliferation, differentiation, growth, senescence, migration and apoptosis. Emerging evidence reveals that sphingomyelinase/ceramide pathway plays a pivotal role in neurodegenerative diseases that involve mitochondrial dysfunction, oxidative stress and apoptosis. Minocycline, a semi-synthetic second-generation tetracycline derivative in clinical use for infection control, is also considered an effective protective agent in various neurodegenerative diseases in pre-clinical studies. Acting via multiple mechanisms, including anti-inflammatory, anti-oxidative and anti-apoptotic effects, minocycline is a desirable candidate for clinical trials in both acute brain injury as well as chronic neurodegenerative disorders. This review is focused on the anti-apoptotic and anti-oxidative mechanisms of minocycline against neurotoxicity induced by sphingomyelinase/ceramide in relation to neurodegeneration, particularly Alzheimer's disease and cerebral ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2012.674640 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China.
Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.
View Article and Find Full Text PDFSpine J
December 2024
Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China. Electronic address:
Background Context: Spinal cord injury (SCI) causes neural circuit interruption and permanent functional damage. Magnetic stimulation in humans with SCI aims to engage residual neural networks to improve neurological functional, but the detailed mechanism remains unknown.
Purpose: This study evaluates functional recovery and neural circuitry improvements in rodent with double-target (brain and spinal cord) magnetic stimulation (DTMS) treatment and explores the effect of DTMS on the modulation of glial cells in vivo and in vitro.
Eur J Med Chem
February 2025
Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China. Electronic address:
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!