It has been suggested that the most-efficient pathway taken by a slowly diffusing many-body system is its geodesic path through the parts of the potential energy landscape lying below a prescribed value of the potential energy. From this perspective, slow diffusion occurs just because these optimal paths become particularly long and convoluted. We test this idea here by applying it to diffusion in two kinds of well-studied low-dimensional percolation problems: the 2d overlapping Lorentz model, and square and simple-cubic bond-dilute lattices. Although the most efficient path should be at its most dominant with the high-dimensional landscapes associated with many-body problems, it is useful to examine simpler, low-dimensional, constant-potential-energy problems such as these ones, both because the simpler models lend themselves to more accurate geodesic-path-finding approaches, and because they offer a significant contrast to many of the models used in the traditional energy-landscape literature. Neither the continuum nor the lattice percolation examples are adequately described by our geodesic-path formalism in the weakly disordered (relatively-fast-diffusion) limit, but in both cases the formalism successfully predicts the existence of the percolation transition and (to a certain extent) the slow diffusion characteristic of near-percolation behavior. The numerical results for these models are not nearly accurate enough near their transitions to describe critical exponents, but the models do showcase the qualitative validity of the geodesic perspective in that they allow us to see explicitly how tortuous and sparse the optimal pathways become as the diffusion constants begin to vanish.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4717460DOI Listing

Publication Analysis

Top Keywords

potential energy
12
energy landscape
8
slowly diffusing
8
slow diffusion
8
dominant efficient
4
efficient pathway
4
pathway potential
4
landscape slowly
4
diffusing disordered
4
disordered system?
4

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!