We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 μs and about ~1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine the role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4709391 | DOI Listing |
Inhal Toxicol
January 2025
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.
View Article and Find Full Text PDFBr J Clin Pharmacol
January 2025
Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands.
Aims: The beta-lactam antibiotic temocillin is increasingly used to treat extended-spectrum beta-lactamase (ESBL-producing) strains; however, its protein binding is complex. This study aims to predict unbound temocillin concentrations in various participant groups to determine its impact on the probability of target attainment (PTA) and to improve dosing recommendations.
Methods: The plasma pharmacokinetics were analysed using non-linear mixed-effects modelling.
Front Neurol
January 2025
School of Public Health, Shanxi Medical University, Taiyuan, China.
Background: Cognitive impairment (CI) is a condition in which an individual experiences noticeable impairment in thinking abilities. Long-term exposure to aluminum (Al) can cause CI. This study aimed to determine the relationship between CI and MRI-related changes in postroom workers exposed to Al.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
Electron transfer is ubiquitous in many chemical reactions and biological phenomena; however, the spatial heterogeneities of electron transfer kinetics in electrocatalysis are so far insufficiently resolved. Measuring and understanding the localized electron transfer are crucial to deciphering the intrinsic activity of electrocatalysts and to achieving further improvements in performance. By using scanning electrochemical probe microscopy to spatially resolve redox electrochemistry across the single-crystalline surface of gold microplates, we discover an intriguing radially distributed electron transfer pattern, where the kinetics around the periphery region are significantly higher than those at the central region, regardless of the redox reaction types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!