Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.

J Food Sci

Dept of Genetics, Faculty of Agriculture, Fayoum Univ, Egypt.

Published: June 2012

Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2012.02690.xDOI Listing

Publication Analysis

Top Keywords

hybrid strains
20
baker's yeast
12
yeast hybrid
12
strains
11
quality parameters
8
commercial baker's
8
alpha-amylase maltase
8
maltase glucoamylase
8
glucoamylase enzymes
8
yeast strains
8

Similar Publications

is widely used as a starter culture in the production of cheese, yoghurt and various cultured dairy products, which holds considerable significance in both research and practical applications within the food industry. Throughout history, the taxonomy of has undergone several adjustments and revisions. In 1984, based on the result of DNA-DNA hybridization, was reclassified as subsp.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are a serious global health threat, making infections harder to treat and increasing medical costs and mortality rates. To combat resistant bacterial strains, a series of compounds (QS1-12) were synthesized with an excellent yield of 85-92%. Initial assessments of these analogues as potential antibacterial agents were conducted through a preliminary screening against a panel of diverse bacterial strains.

View Article and Find Full Text PDF

Metabolic engineering of for high-level production of pneumocandin B.

Synth Syst Biotechnol

June 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China.

Pneumocandin B (PB) is a lipohexapeptide synthesized by and serves as the precursor for the widely used antifungal drug caspofungin acetate (Cancidas®). However, the low titer of PB results in fermentation and purification costs during caspofungin production, limiting its widespread clinical application. Here, we engineered an efficient PB-producing strain of by systems metabolic engineering strategies, including multi-omics analysis and multilevel metabolic engineering.

View Article and Find Full Text PDF

Nitrofuran and pyrazolopyrimidine-based compounds possess a broad antimicrobial spectrum including Gram-positive and Gram-negative bacteria. In the present work, a series of conjugates of these scaffolds was synthesized and evaluated for antimicrobial activity against and methicillin-resistant (MRSA). Many compounds showed MIC values of ≤2 μg ml, with compound 35 demonstrating excellent activity (MICs: 0.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!