Rational exploratory synthesis of new materials requires routes to discover novel phases and systematic methods to tailor their structures and properties. Synthetic reactions in molten fluxes have proven to be an excellent route to new inorganic materials because they promote diffusion and can serve as an additional reactant, but little is known about the mechanisms of compound formation, crystal precipitation, or behavior of fluxes themselves at conditions relevant to synthesis. In this study we examine the properties of a salt flux system that has proven extremely fertile for growth of new materials: the potassium polysulfides spanning K(2)S(3) and K(2)S(5), which melt between 302 and 206 °C. We present in situ Raman spectroscopy of melts between K(2)S(3) and K(2)S(5) and find strong coupling between n in K(2)S(n) and the molten local structure, implying that the S(n)(2-) chains in the crystalline state are mirrored in the melt. In any reactive flux system, K(2)S(n) included, a signature of changing species in the melt implies that their evolution during a reaction can be characterized and eventually controlled for selective formation of compounds. We use in situ X-ray total scattering to obtain the pair distribution function of molten K(2)S(5) and model the length of S(n)(2-) chains in the melt using reverse Monte Carlo simulations. Combining in situ Raman and total scattering provides a path to understanding the behavior of reactive media and should be broadly applied for more informed, targeted synthesis of compounds in a wide variety of inorganic fluxes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja303047e | DOI Listing |
3D Print Med
January 2025
Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.
Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.
View Article and Find Full Text PDFAnal Chem
January 2025
Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.
Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA.
Introduction: The association between adult child educational attainment and older parent's cognitive health may vary across diverse contexts but cross-national comparisons have been limited by differences in outcome assessment, study design, and analytic choices.
Methods: We used harmonized data with comprehensive cognitive assessments from the United States (N = 3088), India (N = 3828), and Mexico (N = 1875) to estimate associations between adult child education and older adults' cognitive functioning using linear regression models adjusted for respondent and family-level socio-economic status (SES) in each study.
Results: Each additional year of offspring education was associated with 0.
Nanoscale
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!