Retinal photodamage by endogenous and xenobiotic agents.

Photochem Photobiol

Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.

Published: November 2013

The human eye is constantly exposed to sunlight and artificial lighting. Light transmission through the eye is fundamental to its unique biological functions of directing vision and circadian rhythm and therefore light absorbed by the eye must be benign. However, exposure to the very intense ambient radiation can pose a hazard particularly if the recipient is over 40 years of age. There are age-related changes in the endogenous (natural) chromophores (lipofuscin, A2E and all-trans-retinal derivatives) in the human retina that makes it more susceptible to visible light damage. Intense visible light sources that do not filter short blue visible light (400-440 nm) used for phototherapy of circadian imbalance (i.e. seasonal affective disorder) increase the risk for age-related light damage to the retina. Moreover, many drugs, dietary supplements, nanoparticles and diagnostic dyes (xenobiotics) absorb ocular light and have the potential to induce photodamage to the retina, leading to transient or permanent blinding disorders. This article will review the underlying reasons why visible light in general and short blue visible light in particular dramatically raises the risk of photodamage to the human retina.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2012.01174.xDOI Listing

Publication Analysis

Top Keywords

visible light
20
light
9
human retina
8
light damage
8
short blue
8
blue visible
8
visible
5
retinal photodamage
4
photodamage endogenous
4
endogenous xenobiotic
4

Similar Publications

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Purpose: Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model.

Methods: Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light.

View Article and Find Full Text PDF

Oral Supplements and Photoprotection: A Systematic Review.

J Med Food

January 2025

Integrative Skin Science and Research, Sacramento, California, USA.

Photoprotective effects of various nutritional components and supplements have been demonstrated in animal and studies. The objective of this systematic review is to assess the photoprotective effects of various dietary supplements. A systematic review of studies assessing dietary supplements on photoprotective outcomes was performed.

View Article and Find Full Text PDF

Background: Data from observational and clinical studies indicate an association between skin microbiota and hidradenitis suppurativa (HS). However, the causal relationship between skin microbiota and HS remains to be elucidated.

Methods: We obtained data on skin microbiota and HS from summary statistics of genome-wide association studies and applied Mendelian randomization (MR) statistical methods to assess causality.

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!