Soluble epoxide hydrolase (sEH) is becoming an attractive therapeutic target in cardiovascular disease. Recently, known human sEH polymorphisms were associated with elevated plasma cholesterol and atherosclerosis. In this study we evaluated the potential role of sEH in regulating cholesterol metabolism through modulating the levels of fatty acid epoxide substrates and/or their corresponding diol products known to activate peroxisome proliferator activated receptors (PPARs). We measured changes in cholesterol levels induced by expressing sEH proteins in mammalian cell lines and in response to treatment with various sEH-related compounds. Our results indicate that sEH has a cholesterol lowering effect that is mediated at least in part through its C-terminal hydrolase activity. In addition, several fatty acid epoxides and their corresponding diols showed cholesterol lowering effects in the current study. In conclusion, this study provides evidence that fatty acid epoxides and diols are endogenous cholesterol lowering molecules and that sEH may be involved in cholesterol regulation by modulating their levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349169 | PMC |
http://dx.doi.org/10.2174/1874073100701010001 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
Monounsaturated fatty acids (MUFA) are an important class of nutrients and are involved in lipid metabolism. The positions of the C=C bond and cis-trans isomerism have a significant influence on their physiological activity. However, simultaneously detecting these two structural properties has been challenging due to multiple isomers of MUFA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!