Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet.

Appl Environ Microbiol

Geological Survey of Denmark and Greenland, Department of Geochemistry, Copenhagen, Denmark.

Published: August 2012

The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [(14)C]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to ∼26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416417PMC
http://dx.doi.org/10.1128/AEM.00400-12DOI Listing

Publication Analysis

Top Keywords

ice sheet
16
24-dichlorophenoxyacetic acid
8
greenland ice
8
microbial community
8
ice
7
microbial degradation
4
degradation 24-dichlorophenoxyacetic
4
acid greenland
4
sheet
4
sheet greenland
4

Similar Publications

Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.

View Article and Find Full Text PDF

The global diversity of Proterozoic eukaryote fossils is poorly quantified despite its fundamental importance to the understanding of macroevolutionary patterns and dynamics on the early Earth. Here we report a new construction of fossil eukaryote diversity from the Paleoproterozoic to early Cambrian based on a comprehensive data compilation and quantitative analyses. The resulting taxonomic richness curve verifies Cryogenian glaciations as a major divide that separates the "Boring Billion" and Ediacaran periods, with the former characterized by a prolonged stasis, and the latter by greater diversity, more-rapid turnover, and multiple radiations and extinctions.

View Article and Find Full Text PDF

Glaciochemistry and environmental interpretation of a snow core from West Antarctica.

An Acad Bras Cienc

December 2024

Universidade Federal do Rio Grande do Sul, Centro Polar e Climático, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.

This study investigated the chemical content of a shallow snow core (4.95 m) named TT 6, collected during a Brazilian traverse of the West Antarctic Ice Sheet in the 2014/2015 Austral summer. Stable isotope ratios (δD and δ18O) and ionic content, determined at the Centro Polar e Climático of the Federal University of Rio Grande do Sul (CPC/UFRGS), were used to date the core and reconstruct the climatic conditions at the site.

View Article and Find Full Text PDF

Changes and collapse in lacustrine system in Antarctic Peninsula ice-free area: Boeckella and Buenos Aires lakes.

An Acad Bras Cienc

December 2024

Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Prov. Buenos Aires, Argentina.

Some Antarctic ice-free areas have been affected by changes in lacustrine zones and permafrost thawing due to rising air temperatures over the last 60 years Temperature time-series were analyzed to understand the processes leading to the changes of Boeckella and Buenos Aires lakes, north Antarctic Peninsula. Statistical calculations were applied to average, maximum, and minimum temperatures, as well as to indexes such as Positive Degrees Day, Freezing/Thaw Day, and days with temperatures ≥ 0 °C and ≥ 10 °C. Changes in the region over recent decades were observed in mean and maximum temperatures and an increase in minimum temperature since the mid-1990s.

View Article and Find Full Text PDF

Recent Antarctic sea-ice decline is a substantial source of concern, notably the record low in 2023 (ref. ). Progress has been made towards establishing the causes of ice loss but uncertainty remains about its consequences for ocean-atmosphere interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!