Copolymer nanoparticles composed of sulfobetaine and poly(ε-caprolactone) as novel anticancer drug carriers.

J Biomed Mater Res A

College of Polymer Science and Engineering of Sichuan University, Sichuan University, Sichuan 610065, People's Republic of China.

Published: August 2012

Novel ABA type amphiphilic copolymers (PCL-APS-PCL) consisting of polycaprolactone (PCL) (A) as hydrophobic block and N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (APS) (B) as hydrophilic segment, self-assembled into nanoparticles (NPs) with solvent evaporation method. The sizes and size distributions of NPs were characterized by dynamic light scattering. The morphology of NPs was observed by scanning electron microscopy (SEM). The critical micelle concentration (CMC) was determined by fluorescent probe. The drug loading content (DLC) and the drug release amount were characterized by UV-visible spectrophotometer. The cytotoxicity of the NPs was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazoliumbromide (MTT) assay. It was found that the NPs were spherical in shape with sizes around 100 nm. The CMCs of the copolymers were quite low (×10(-4) mg/mL). The DLC decreased with lengthening of hydrophobic PCL block. In vitro drug release experiment demonstrated that the release rate of paclitaxel sped with the decrease of PCL length. MTT results showed that NPs were nontoxic to osteoblast and human epithelial carcinoma (hela) cells. After drug loading, NPs could restrain the growth of hela or even kill hela cells. Therefore, these preliminary studies suggest that the novel PCL-APS-PCL NPs have a great potential application as anticancer drug-delivery carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34120DOI Listing

Publication Analysis

Top Keywords

nps
8
drug loading
8
drug release
8
hela cells
8
drug
5
copolymer nanoparticles
4
nanoparticles composed
4
composed sulfobetaine
4
sulfobetaine polyε-caprolactone
4
polyε-caprolactone novel
4

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Current views and trends of nanomaterials as vectors for gene delivery since the 21st century: a bibliometric analysis.

Nanomedicine (Lond)

January 2025

Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

Background: Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent.

View Article and Find Full Text PDF

Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.

View Article and Find Full Text PDF

Acute renal injury (AKI) has a high incidence rate and mortality, but current treatment methods are limited. As a kind of nanomaterial with enzyme-like activity, nanozyme has shown outstanding advantages in treating AKI according to recent reports. Herein, we assess the potential of manganese-based nanozymes (MnO-BSA NPs) with excellent biosafety in effectively alleviating AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!