One-pot fabrication of noble-metal nanoparticles that are encapsulated in hollow silica nanospheres: dual roles of poly(acrylic acid).

Chemistry

Functional Nanomaterials Laboratory, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Zhongguancun Donglu 29, Haidianqu, Beijing 100190, PR China.

Published: June 2012

An efficient and facile one-pot method was developed to fabricate noble-metal nanoparticles (NMNs; Au, Pt, PdO and Ag) that were encapsulated within hollow silica nanospheres (HSNs; NMNs@HSNs) with a size of about 100 nm. NMNs@HSNs were afforded in very high yields between 85-95 %. Poly(acrylic acid) (PAA) polyelectrolyte played a dual role in the fabrication process, both as a core template of the HSNs and as a captor of the NMNs through coordination interactions between the COO(-) groups on the ammonium polyacrylate (APA) polyanionic chains and the empty orbital of the Au atom. The amount of Au loading in Au@HSNs was easily regulated by varying the volume of the HAuCl(4) solution added. In addition, these rattle-type particles were successfully applied in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction, thus indicating that the micropores in the silica shell could achieve the transport of small species--with a size smaller than that of the micropores--into the cavity. Thus, these fabricated NMNs@HSNs have promising applications in catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201200307DOI Listing

Publication Analysis

Top Keywords

noble-metal nanoparticles
8
encapsulated hollow
8
hollow silica
8
silica nanospheres
8
polyacrylic acid
8
one-pot fabrication
4
fabrication noble-metal
4
nanoparticles encapsulated
4
nanospheres dual
4
dual roles
4

Similar Publications

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.

View Article and Find Full Text PDF

The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.

View Article and Find Full Text PDF

Synthesis of IrCu/CoO hybrid nanostructures and their enhanced catalytic properties toward oxygen evolution reaction under both acidic and alkaline conditions.

Dalton Trans

January 2025

Department of Chemical Engineering, Integrated Engineering Major, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Oxygen evolution reaction (OER) is a half-reaction that occurs at the anode during water electrolysis, and owing to its slow kinetics, it is the rate-limiting step in the process. Alloying with transition metal and combining with transition metal oxide supports are effective methods for modifying the electronic structure of noble metal catalysts and improving their catalytic properties. In this study, we synthesized IrCu/CoO hybrid nanostructures by attaching IrCu alloy nanoparticles onto CoO nanosheets.

View Article and Find Full Text PDF

Loading cocatalysts on semiconductor-based photocatalysts to create active reaction sites is a preferable method to enhance photocatalytic activity and a widely adopted strategy to achieve effective photocatalytic applications. Although theoretical calculations suggest that the broad density of states of noble metal cocatalysts, such as Pt, act as a recombination center, this has never been experimentally demonstrated. Herein, we employed pico-nano and nano-micro second transient absorption spectroscopy to investigate the often overlooked photogenerated holes, instead of the widely studied electrons on Pt- and Ni-loaded SrTiO to evaluate the effects of cocatalysts as a recombination center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!