The aim of this study is to design and test a new high-resolution hybrid depth of interaction (DOI) detector for a dedicated breast PET/CT scanner. Two detectors have been designed and built. The completed detectors are based on a 14 × 14 array of 1.5 × 1.5 × 20 mm(3) unpolished lutetium orthosilicate scintillation crystals, with each element coated in a 50 μm layer of reflective material. The detector is read out from both ends using a position-sensitive photomultiplier tube (PSPMT) and a large active area (20 × 20 mm(2)) avalanche photodiode (APD) to enable acquisition of DOI information. Nuclear instrumentation modules were used to characterize the detectors' performances in terms of timing, intrinsic spatial resolution (ISR) and energy resolution, as well as DOI resolution with a dual-ended readout configuration. Measurements with the APD were performed at a temperature of 10 °C. All crystals were identified at all depths, even though the signal amplitude from the PSPMT decreases with depth away from it. We measured a timing resolution of 2.4 ns, and an average energy resolution of 19%. The mean ISR was measured to be 1.2 mm for crystals in the central row of the array for detectors in the face-to-face position. Two off-center positions were measured corresponding to 26° and 51° oblique photon incidence, and the mean ISR at these positions was 1.5 and 1.7 mm, respectively. The average DOI resolution across all crystals and depths was measured to be 2.9 mm (including the beam width of 0.6 mm). This detector design shows good promise as a high-resolution detector for a dedicated breast PET/CT scanner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397825PMC
http://dx.doi.org/10.1088/0031-9155/57/11/3435DOI Listing

Publication Analysis

Top Keywords

detector dedicated
12
dedicated breast
12
breast pet/ct
12
pet/ct scanner
12
high-resolution hybrid
8
doi detector
8
energy resolution
8
doi resolution
8
resolution
6
doi
5

Similar Publications

The Effect of Plaque Detectors on the Color Stability of Two Types of Restorative Materials.

J Esthet Restor Dent

January 2025

Department of Biomedical and Neuromotor Science (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.

Objective: To investigate the color stability of a one-shade resin-based composite material (RC) and a glass-ionomer cement (GIC) after staining with plaque detectors (PDs) with different formulations and delivery forms.

Materials And Methods: Rectangular-shaped specimens (7 × 3 × 2 mm) were produced with RC (Venus Diamond One, Kulzer) and GIC (Fujy IX GP, GC) (n = 30). Further, the following PDs were used on the specimens: (1) tablets (T; Plaq-Search, TePe); (2) mouthwash (M; Plaque Agent, Miradent); and (3) light-curing liquid (L; Plaque test, Ivoclar).

View Article and Find Full Text PDF

The presented work is dedicated to the detection of hydrogen, using detectors based on a MAPD (Micropixel Avalanche Photodiode) array based on new MAPD-3NM-2 type photodiodes and two different scintillators (LaBr(Ce) and LSO(Ce)). The physical parameters of the MAPD photodiode used in the study and the intrinsic background of the scintillators were investigated. For the 2.

View Article and Find Full Text PDF

Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top vs. a tapered top.

Biomed Phys Eng Express

January 2025

Advanced Nuclear Medicine Science, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, JAPAN, Chiba, 263-8555, JAPAN.

For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously.

View Article and Find Full Text PDF

Background: Dedicated breast computed tomography (bCT) systems offer detailed imaging for breast cancer diagnosis and treatment. As new bCT generations are developed, it is important to evaluate their imaging performance and dose efficiency to understand differences over previous models.

Purpose: To characterize the imaging performance and dose efficiency of a second-generation (GEN2) bCT system and compare them to those of a first-generation (GEN1) system.

View Article and Find Full Text PDF

Integrating time-of-flight (ToF) measurements in radiography and computed tomography (CT) enables an approach for scatter rejection in imaging systems that eliminates the need for anti-scatter grids, potentially increasing system sensitivity and image quality. However, present hardware dedicated to the time-correlated measurement of X-rays is limited to a small scale and low density. A switch to highly integrated electronics and detectors is needed to progress towards a medium-scale system capable of acquiring images, while offering a timing resolution below 300 ps FWHM to achieve scatter rejection comparable to current grids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!