Upon disruption of ER homeostasis, plant cells activate at least two branches of the unfolded protein response (UPR) through IRE1-like and ATAF6-like transducers, resulting in the upregulation of ER-resident molecular chaperones and the activation of the ER-associated degradation protein system. Here, we discuss a new ER stress response pathway in plants that is associated with an osmotic stress response in transducing a cell death signal. Both ER and osmotic stress induce the expression of the novel transcription factor GmERD15, which binds and activates N-rich protein (NRP) promoters to induce NRP expression and cause the upregulation of GmNAC6, an effector of the cell death response. In contrast to this activation mechanism, the ER-resident molecular chaperone binding protein (BiP) attenuates the propagation of the cell death signal by modulating the expression and activity of components of the ER and osmotic stress-induced NRP-mediated cell death signaling. This interaction attenuates dehydration-induced cell death and promotes a better adaptation of BiP-overexpressing transgenic lines to drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442856PMC
http://dx.doi.org/10.4161/psb.20111DOI Listing

Publication Analysis

Top Keywords

cell death
24
stress response
12
n-rich protein
8
nrp-mediated cell
8
death signaling
8
er-resident molecular
8
osmotic stress
8
death signal
8
cell
6
death
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!