Many methods used to analyze neuronal response assume that neuronal activity has a fundamentally linear relationship to the stimulus. However, some neurons are strongly sensitive to multiple directions in stimulus space and have a highly nonlinear response. It can be difficult to find optimal stimuli for these neurons. We demonstrate how successive linear approximations of neuronal response can effectively carry out gradient ascent and move through stimulus space towards local maxima of the response. We demonstrate search results for a simple model neuron and two models of a highly selective neuron.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-012-0395-7DOI Listing

Publication Analysis

Top Keywords

optimal stimuli
8
neuronal response
8
stimulus space
8
response
5
searching optimal
4
stimuli ascending
4
ascending neuron's
4
neuron's response
4
response function
4
function methods
4

Similar Publications

Prediction of future input explains lateral connectivity in primary visual cortex.

Curr Biol

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK. Electronic address:

Neurons in primary visual cortex (V1) show a remarkable functional specificity in their pre- and postsynaptic partners. Recent work has revealed a variety of wiring biases describing how the short- and long-range connections of V1 neurons relate to their tuning properties. However, it is less clear whether these connectivity rules are based on some underlying principle of cortical organization.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

EEG alpha activity as predictor for TBS-rTMS treatment outcome in depression.

J Psychiatr Res

January 2025

Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zürich, Switzerland.

Repetitive transcranial magnetic stimulation (rTMS) is an established psychiatric procedure for patients suffering from treatment-resistant depression (TRD). Biomarker identification to predict rTMS outcomes may assist the clinician in optimizing treatment selection. In recent years, different electrophysiological markers, in particular electroencephalographic (EEG) markers, were shown to yield discriminative power between responders and non-responders to various TRD treatments.

View Article and Find Full Text PDF

4D-printed programmable sample-/eluent-actuated solid-phase extraction device for trace metal analysis.

Anal Chim Acta

January 2025

Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan, ROC. Electronic address:

Background: To integrate valves, manifolds, and solid-phase extraction (SPE) columns into a compact device is technically difficult. Four-dimensional printing (4DP) technologies, employing stimuli-responsive materials in three-dimensional printing (3DP), are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices that can show time-dependent shape programming to enable more complex geometric designs and functions. However, 4D-printed stimuli-responsive actuators and valves utilized to control flowing streams in SPE applications remain rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!