Antibody switching involves class switch recombination (CSR) events between switch (S) regions located upstream of heavy chain constant (C) genes. Mechanisms targeting CSR to S-regions are not clear. Deletion of Sμ tandem repeat (SμTR) sequences causes CSR to shift into downstream regions that do not undergo CSR in WT B-cells, including the Cμ-region. We now find that, in SμTR(-/-) B cells, Sμ chromatin histone modification patterns also shift downstream relative to WT and coincide with SμTR(-/-) CSR locations. Our results suggest that histone H3 acetylation and methylation are involved in accessibility of switch regions and that these modifications are not dependent on the underlying sequence, but may be controlled by the location of upstream promoter or regulatory elements. Our studies also show RNA polymerase II (RNAPII) loading increases in the Eμ/Iμ region in stimulated B cells; these increases are independent of SμTR sequences. Longer Sμ deletions have been reported to eliminate increases in RNAPII density, therefore we suggest that sequences between Iμ and Sμ (possibly the Iμ splicing region as well as G-tracts that are involved in stable RNA:DNA complex formation during transcription) might control the RNAPII density increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361635 | PMC |
http://dx.doi.org/10.1016/j.molimm.2012.04.006 | DOI Listing |
Adv Mater
January 2025
International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Electrochemical reduction of CO to value-added multicarbon (C) productions offers an attractive route for renewable energy storage and CO utilization, but it remains challenging to achieve high C selectivity at industrial-level current density. Herein, a MoCu single-atom alloy (SAA) catalyst is reported that displays a remarkable C Faradaic efficiency of 86.4% under 0.
View Article and Find Full Text PDFToxins (Basel)
September 2024
Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan.
Diabetes Care
October 2024
Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K.
J Immunother Cancer
July 2024
Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
Background: This study comprehensively investigates the association between the expression of nicotinamide N-methyltransferase (NNMT) and clinical outcomes of urothelial bladder cancer (UBC), as well as the molecular mechanisms by which NNMT in cancer-associated fibroblast (CAF) modulates tumor progression and immunotherapy resistance in UBC.
Methods: Single-cell transcriptomic analyses, immunohistochemical and immunofluorescence assays were performed on bladder cancer samples to validate the relationship between NNMT expression and clinical outcomes. A series of experiments, including chromatin immunoprecipitation assay, liquid chromatography tandem mass spectrometry assay, and CRISPR‒Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) knockout, together with models, have been established to determine the molecular functions of NNMT in CAFs in UBC.
Int J Res Oncol
April 2024
Department of Chemistry, University of Puerto Rico at Mayagüez, CALL BOX 9000, Mayagüez, PR 00681-9000.
The current study illuminates the multifaceted role of Serum Amyloid A (SAA), an essential acute-phase protein implicated in diverse biological realms, encompassing inflammation, oncogenesis, and stress modulation. With a focus on delineating the intricate protein-protein interactions orchestrated by SAA, this investigation unravels its diverse functions within the human physiological landscape. Utilizing the HepG2 cell line, renowned for its proficiency in facilitating SAA overexpression, we meticulously generated protein extracts after inducing SAA hyperexpression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!