A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ARD1 binding to RIP1 mediates doxorubicin-induced NF-κB activation. | LitMetric

ARD1 binding to RIP1 mediates doxorubicin-induced NF-κB activation.

Biochem Biophys Res Commun

Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.

Published: June 2012

NF-κB is activated by several cellular stresses. Of these, the TNFα-induced activation pathway has been examined in detail. It was recently reported that receptor-interacting protein 1 (RIP1) is involved in DNA damage-induced NF-κB activation by forming a complex with the p53 interacting death domain protein (PIDD) and NF-κB essential modulator (NEMO) in the nucleus, although the underlying mechanism of this interaction has yet to be clarified. This study shows that siRNA knock-down of arrest-defective 1 protein (ARD1) abrogated doxorubicin- but not TNFα-induced activation. Conversely, the over-expression of ARD1 greatly enhanced NF-κB activation induced by doxorubicin. Immunoprecipitation experiments revealed that ARD1 interacted with RIP1 via the acetyltransferase domain. Furthermore, the over-expression of several domain-deleted ARD1 constructs demonstrated that the N-terminal and acetyltransferase domains of ARD1 were required for doxorubicin-induced NF-κB activation. Treatment of deacetylase inhibitor, trichostatin A, significantly increased doxorubicin-induced NF-κB activation in the presence of ARD1 but not acetyltransferase-defective ARD1 mutant. Moreover, N-terminal domain-deleted ARD1 could not be localized in the nucleus in response to doxorubicin treatment. These data indicate that the interaction between ARD1 and RIP1 plays an important role in the DNA damage-induced NF-κB activation, and that the acetyltransferase activity of ARD1 and its localization in to the nucleus are involved in such stress response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.04.150DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
24
doxorubicin-induced nf-κb
12
ard1
11
nf-κb
8
activation
8
tnfα-induced activation
8
dna damage-induced
8
damage-induced nf-κb
8
domain-deleted ard1
8
ard1 binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!