A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cysteine protease attribute of eukaryotic ribosomal protein S4. | LitMetric

Cysteine protease attribute of eukaryotic ribosomal protein S4.

Biochim Biophys Acta

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.

Published: October 2012

Background: Ribosomal proteins often carry out extraribosomal functions. The protein S4 from the smaller subunit of Escherichia coli, for instance, regulates self synthesis and acts as a transcription factor. In humans, S4 might be involved in Turner syndrome. Recent studies also associate many ribosomal proteins with malignancy, and cell death and survival. The list of extraribosomal functions of ribosomal proteins thus continues to grow.

Methods: Enzymatic action of recombinant wheat S4 on fluorogenic peptide substrates Ac-XEXD↓-AFC (N-acetyl-residue-Glu-residue-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR↓-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin) as well as proteins has been examined under a variety of solution conditions.

Results: Eukaryotic ribosomal protein S4 is an endoprotease exhibiting all characteristics of cysteine proteases. The K(m) value for the cleavage of Z-FR↓-AMC by a cysteine mutant (C41F) is about 70-fold higher relative to that for the wild-type protein under identical conditions, implying that S4 is indeed a cysteine protease. Interestingly, activity responses of the S4 protein and caspases toward environmental parameters, including pH, temperature, ionic strength, and Mg(2+) and Zn(2+) concentrations, are quite similar. Respective kinetic constants for their cleavage action on Ac-LEHD↓-AFC are also similar. However, S4 cannot be a caspase, because unlike the latter it also hydrolyzes the cathepsin substrate Z-FR↓-AMC.

General Significance: The eukaryotic S4 is a generic cysteine protease capable of hydrolyzing a broad spectrum of synthetic substrates and proteins. The enzyme attribute of eukaryotic ribosomal protein S4 is a new phenomenon. Its possible involvement in cell growth and proliferations are presented in the light of known extraribosomal roles of ribosomal proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2012.05.001DOI Listing

Publication Analysis

Top Keywords

ribosomal proteins
16
cysteine protease
12
eukaryotic ribosomal
12
ribosomal protein
12
attribute eukaryotic
8
extraribosomal functions
8
ribosomal
7
protein
6
proteins
6
cysteine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!