Activity maintains structural plasticity of mossy fiber terminals in the hippocampus.

Mol Cell Neurosci

Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada H3G 1A4.

Published: July 2012

Neural activity plays an important role in organizing and optimizing neural circuits during development and in the mature nervous system. However, the cellular events that underlie this process still remain to be fully understood. In this study, we investigated the role of neural activity in regulating the structural plasticity of presynaptic terminals in the hippocampal formation. We designed a virus to drive the Drosophila Allatostatin receptor in individual dentate granule neurons to suppress activity of complex mossy fiber terminals 'on-demand' in organotypic slices and used time-lapse confocal imaging to determine the impact on presynaptic remodeling. We found that activity played an important role in maintaining the structural plasticity of the core region of the mossy fiber terminal (MFT) that synapses onto CA3 pyramidal cell thorny excrescences but was not essential for the motility of terminal filopodial extensions that contact local inhibitory neurons. Short-term suppression of activity did not have an impact on the size of the MFT, however, longer-term suppression reduced the overall size of the MFT. Remarkably, global blockade of activity with tetrodotoxin (TTX) interfered with the ability of single cell activity deprivation to slow down terminal dynamics suggesting that differences in activity levels among neighboring synapses promote synaptic remodeling events. The results from our studies indicate that neural activity plays an important role in maintaining structural plasticity of presynaptic compartments in the central nervous system and provide new insight into the time-frame during which activity can affect the morphology of synaptic connections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2012.05.004DOI Listing

Publication Analysis

Top Keywords

structural plasticity
16
mossy fiber
12
neural activity
12
activity
11
fiber terminals
8
activity plays
8
plays role
8
nervous system
8
plasticity presynaptic
8
role maintaining
8

Similar Publications

Structure and properties of chitosan plasticized with hydrophobic short-chain fatty acid cosolvent.

Int J Biol Macromol

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:

The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.

View Article and Find Full Text PDF

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Plastics play an essential role in modern fisheries and their degradation releases micro- and nano-sized plastic particles which further causes ecological and human health hazards through various environmental contamination pathways and toxicity mechanisms, which can cause respiratory problems, cancer, reproductive toxicity, endocrine disruption and neurological effects in humans. This study utilized various bioinformatics tools through multi-step computational analyses to investigate the interactions between prevalent fisheries microplastics and the key protein receptor acetylcholinesterase (AChE), which is associated with neurotoxicity, as it can interfere with nerve impulses and muscle control. Our results indicate that the binding of seven polymers within AChE's active site, with dodecane and polypropylene exhibited highest affinity with hydrogen bonding were observed through Molecular docking of different program (PyRx) and servers (CB-Dock, eDock) then the stability of AChE-dodecane and AChE-polypropylene complexes were observed through MD simulations for 100 ns.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!