A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Echo-based Single Point Imaging (ESPI): a novel pulsed EPR imaging modality for high spatial resolution and quantitative oximetry. | LitMetric

A novel time-domain spectroscopic EPR imaging approach, that is a unique combination of already known techniques, is described. The first one is multi-gradient Single Point Imaging involving pure phase-encoding where the oximetry is based on T(2)(∗). Line width derived from T(2)(∗) is subject to susceptibility effects and therefore needs system-dependent line width calibrations. The second approach utilizes the conventional 90°-τ-180° Spin-Echo pulse sequence where the images are obtained by the filtered back-projection after FT of the echoes collected under frequency-encoding gradients. The spatially resolved oximetry information is derived from a set of T(2)-weighted images. The back-projection images suffer susceptibility artifacts with resolution determined by T(2)(∗), but the oximetry based on T(2) is quite reliable. The current approach combines Single Point Imaging and the Spin-Echo procedure to take advantage the enhanced spatial resolution associated with the former and the T(2) dependent contrast of the latter. Pairs of images are derived choosing two time points located at identical time intervals on either side of the 180° pulse. The refocusing pulse being exactly in the middle of the two points ensures that artifacts associated with susceptibility and field inhomogeneities are eliminated. In addition, the net phase accumulated by the two time points being identical results in identical field of views, thus avoiding the zoom-in effect as a function delay in regular SPI and the associated interpolation requirements employed in T(2)(∗)-weighted oximetry. The end result is superior image resolution and reliable oximetry. In spite of the fact that projection-reconstruction methods require less number of measurements compared to SPI, the enormous advantage in SNR of the SPI procedure makes the echo-based SPI equally efficient in terms of measurement time. The Fourier reconstruction, line width independent resolution and the true T(2)-weighting make this novel procedure very attractive for in vivo EPR imaging of tissue oxygen quantitatively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391073PMC
http://dx.doi.org/10.1016/j.jmr.2012.03.022DOI Listing

Publication Analysis

Top Keywords

single point
12
point imaging
12
epr imaging
12
spatial resolution
8
oximetry based
8
time points
8
imaging
6
oximetry
6
resolution
5
echo-based single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!