The growth of ultra-thick inorganic CdS shells over CdSe nanocrystal quantum dot (NQD) cores gives rise to a distinct class of NQD called the "giant" NQD (g-NQD). g-NQDs are characterized by unique photophysical properties compared to their conventional core/shell NQD counterparts, including suppressed fluorescence intermittency (blinking), photobleaching, and nonradiative Auger recombination. Here, we report new insights into the numerous synthetic conditions that influence the complex process of thick-shell growth. We show the individual and collective effects of multiple reaction parameters (noncoordinating solvent and coordinating-ligand identities and concentrations, precursor/NQD ratios, precursor reaction times, etc.) on determining g-NQD shape and crystalline phase, and the relationship between these structural features and optical properties. We find that hexagonally faceted wurzite g-NQDs afford the highest ensemble quantum yields in emission and the most complete suppression of blinking. Significantly, we also reveal a clear correlation between g-NQD particle volume and blinking suppression, such that larger cores afford blinking-suppressed behavior at relatively thinner shells compared to smaller starting core sizes, which require application of thicker shells to realize the same level of blinking suppression. We show that there is a common, threshold g-NQD volume (~750 nm(3)) that is required to observe blinking suppression and that this particle volume corresponds to an NQD radiative lifetime of ~65 ns regardless of starting core size. Combining new understanding of key synthetic parameters with optimized core/shell particle volumes, we demonstrate effectively complete suppression of blinking even for long observation times of ~1 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja212032q | DOI Listing |
Sci Rep
January 2025
School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.
View Article and Find Full Text PDFIn this paper, we report an investigation into the dynamics of laser-induced particle sputtering on the rear surface of fused silica at high-fluence laser systems. Using time-resolved pump-probe and continuous imaging techniques, we capture the entire sputtering process over a broader timescale. The morphology, kinematics, and their correlation with damage growth are analyzed through microscopic imaging.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Safety and Quality Assurance division, National Cancer Center Hospital East, Chiba, 277-8577, Japan.
The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.
The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!