The application of electromagnetic field in the context of bacteria associated infections on biomaterial surfaces has not been extensively explored. In this work, we applied a moderate intensity static magnetic field (100 mT) to understand the adhesion and growth behavior of both gram positive (S. epidermidis) and gram negative bacteria (E. coli) and also to investigate bactericidal/bacteriostatic property of the applied electromagnetic field. An in-house built magnetometer was used to apply static homogeneous magnetic field during a planned set of in vitro experiments. Both the sintered hydroxyapatite (HA) and the control samples seeded with bacteria were exposed to the magnetic field (100 mT) for different timescale during their log phase growth. Quantitative analysis of the SEM images confirms the effect of electromagnetic field on suppressing bacterial growth. Furthermore, cell integrity and inner membrane permeabilization assays were performed to understand the origin of such effect. The results of these assays were statistically analyzed to reveal the bactericidal effect of magnetic field, indicating cell membrane damage. Under the investigated culture conditions, the bactericidal effect was found to be less effective for S. Epidermidis than E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.32685 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Applied Physics, Hebrew University, Jerusalem, Israel.
In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.
We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!