Cardiac hypertrophy is controlled by a dense signaling network with many pathways associated with cardiac myocyte growth. New large scale methodology is required to quantitatively characterize the pathways that distinguish reversible forms of hypertrophy from irreversible forms that lead to heart failure. Our automated image acquisition method records 5×5 mosaic images of fluorescent protein-labeled cardiac myocytes within each well of a 96-well plate using an automated stage and focus. Post-processing algorithms automatically identify cell edges, quantify cell phenotypes, and track cells. We uniquely applied our imaging platform to study hypertrophy reversibility in a scalable cell model. Cell area changes after washout of a dose response to the α-adrenergic receptor (αAR) agonist phenylephrine (PE) showed that hypertrophy reverses at low but not high levels of α-adrenergic signaling: a reversibility delay. Perturbations with specialized αAR antagonists, a mathematical model, and live imaging of αAR localization identify the mechanism for this reversibility delay: ligand trapping with internalized PE acting on intracellular αAR's.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389167PMC
http://dx.doi.org/10.1016/j.yjmcc.2012.04.016DOI Listing

Publication Analysis

Top Keywords

cardiac myocyte
8
reversibility delay
8
hypertrophy
5
automated imaging
4
imaging reveals
4
reveals concentration
4
concentration dependent
4
dependent delay
4
reversibility
4
delay reversibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!