Influence of corticostriatal δ-opioid receptors on abnormal involuntary movements induced by L-DOPA in hemiparkinsonian rats.

Exp Neurol

Experimental Neuropsychopharmacology Laboratory (EA 4359), University and Hospital Institute of Biomedical Research, University of Rouen, IFR23, 76183 Rouen, France.

Published: August 2012

Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease induces in time numerous side effects, such as abnormal involuntary movements called L-DOPA-induced dyskinesias (LIDs). An involvement of glutamate transmission, dopamine transmission and opioid transmission in striatal output pathways has been hypothesized for the induction of LIDs. Interestingly, our previous experiments indicated that some striatal δ-opioid receptors are located on terminals of glutamatergic corticostriatal neurons and that stimulation of these receptors modulates the release of glutamate and dopamine. The present study was performed to test the involvement of δ-opioid receptors, and more precisely of those located on corticostriatal neurons, in abnormal involuntary movements induced by L-DOPA in hemiparkinsonian rats. The effects of a selective agonist, [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE) and a selective antagonist (naltrindole) of δ-opioid receptors on LIDs were investigated in animals submitted or not to a corticostriatal deafferentation. Our results indicate that DPDPE and naltrindole respectively enhanced and reduced LIDs in animals in which the ipsilateral cortex was preserved intact. However, the lesion of the ipsilateral cortex prevented the stimulant effect of DPDPE on LIDs. The [(3)H]-DPDPE binding to striatal membranes prepared from the whole striatum was also studied. A significant increase in density of δ-opioid receptors was found in the striatum of dyskinetic animals as compared to non-dyskinetic animals but this difference was abolished by the corticostriatal deafferentation. These results indicate that δ-opioid transmission modulates the expression of LIDs in rodents and suggest that the δ-opioid receptors involved in this effect are located on terminals of corticostriatal neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2012.04.017DOI Listing

Publication Analysis

Top Keywords

δ-opioid receptors
24
abnormal involuntary
12
involuntary movements
12
corticostriatal neurons
12
movements induced
8
induced l-dopa
8
l-dopa hemiparkinsonian
8
hemiparkinsonian rats
8
located terminals
8
corticostriatal deafferentation
8

Similar Publications

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Identification of genetic variants of the gene in association with COPD susceptibility.

Ann Med

December 2025

Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.

Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.

Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).

View Article and Find Full Text PDF

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

GLP-1RA Use and Thyroid Cancer Risk.

JAMA Otolaryngol Head Neck Surg

January 2025

OptumLabs, Eden Prairie, Minnesota.

Importance: The increasing use of glucagon-like peptide-1 receptor agonists (GLP-1RA) demands a better understanding of their association with thyroid cancer.

Objective: To estimate the risk of incident thyroid cancer among adults with type 2 diabetes being treated with GLP-1RA vs other common glucose-lowering medications.

Design, Setting, And Participants: This was a prespecified secondary analysis of a target trial emulation of a comparative effectiveness study using claims data for enrollees in commercial, Medicare Advantage, and Medicare fee-for-service plans across the US.

View Article and Find Full Text PDF

Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6.

Proc Natl Acad Sci U S A

January 2025

Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!