Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multicomponent synthetic strategy involving copper(II) ions, tert-butylphosphonic acid (t-BuPO(3)H(2)) and 3-substituted pyrazole ligands has been adopted for the synthesis of soluble molecular copper(II) phosphonates. The use of six different 3-substituted pyrazoles, 3-R-PzH [R = H, Me, CF(3), Ph, 2-pyridyl (2-Py), and 2-methoxyphenyl (2-MeO-C(6)H(4))] as ancillary ligands afforded nine different decanuclear cages, [Cu(5)(μ(3)-OH)(2)(O(3)P-t-Bu)(3)(3-R-Pz)(2)(X)(2)](2)·(Y) where R = H, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (1); R = Me, X = 3-MePzH, and Y = solvent (2); R = Me, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (3); R = CF(3), X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (4); R = Ph, X = 3-PhPzH, and Y = solvent (5); R = 2-Py, X = 0.5 MeOH, and Y = solvent (6); R = 2-Py, X = none, and Y = solvent (7); R = 2-Py, X = H(2)O, and Y = (Et(3)NH(+)·PF(6)(-))(2)(solvent) (8); R = 2-MeO-C(6)H(4), X = MeOH or 0.5:0.5 MeOH/H(2)O, and Y = solvent (9). Compounds 1-6, 8, and 9 were isolated using a direct synthetic method which involves the reaction of copper(II) salts and the ligands, while 7 was obtained from an indirect route involving the reaction of preformed copper-pyridylpyrazolate precursor complexes and t-BuPO(3)H(2). The decametallic compounds 1-9 possess a butterfly shaped core. The core of the cages 1, 3, and 4 are tetraanionic and contain more phosphonates than pyrazole ligands, while the other cages are neutral and contain more pyrazoles than phosphonate ligands. Compounds 1-6 have been studied by electrospray ionization-high-resolution mass spectrometry (ESI-HRMS). The decanuclear cage 6 was shown to be a good plasmid modifier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic202510d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!