Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, Gα-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344933PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036681PLOS

Publication Analysis

Top Keywords

cell migration
16
cell polarity
12
cell
10
girdin
8
endothelial cells
8
girdin regulates
8
directional cell
8
par protein
8
protein complex
8
polarization fibroblasts
8

Similar Publications

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Investigating Cell-Induced Mixing Dynamics in Microfluidic Droplets Using the Lattice Boltzmann Method.

Langmuir

January 2025

CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.

This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!