Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (<0.1 ml O(2)l(-1)) for hundreds of meters below this depth, and in the California borderland, where oxygen levels reach 0.2 ml O(2)l(-1) at 700 m with severely hypoxic (<1.0 ml O(2)l(-1)) waters at depths 300 m above and below that. Despite the very low oxygen, mesopelagic fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same lifestyle but living in systems with much higher oxygen concentrations: the Gulf of Mexico and the Southern Ocean. ADH activities in the Arabian Sea fishes were similar to those of goldfish, far higher than those of confamilials from the less severe minimum in the Gulf of Mexico, suggesting that the Arabian Sea fishes are capable of exploiting the novel ethanol endpoint to become competent anaerobes. In turn, the fishes of California exhibited a higher ADH activity than their Antarctic relatives. It was concluded that ADH activity is more widespread in fishes than previously believed and that it may play a role in allowing vertically migrating fishes to exploit the safe haven afforded by severe oxygen minima.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.060236DOI Listing

Publication Analysis

Top Keywords

aerobic anaerobic
4
anaerobic metabolism
4
metabolism oxygen
4
oxygen minimum
4
minimum layer
4
layer fishes
4
fishes role
4
role alcohol
4
alcohol dehydrogenase
4
dehydrogenase zones
4

Similar Publications

Educational Strategies for Teaching Metabolic Profiles Across Three Endurance Training Zones.

Adv Physiol Educ

January 2025

Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.

This article explores an innovative educational approach using a metabolic board designed to enhance understanding of muscle metabolism across three endurance training zones: Z1 (light intensity), Z2 (moderate intensity), and Z3 (intense/severe intensity). The aerobic threshold marks the transition from light to moderate domains, and the anaerobic threshold separates moderate from intense domains, with both thresholds adapting to training. Exercises within each training zone elicit specific adaptive responses through distinct signaling pathways, but the metabolic profile induced remains relatively constant across these intensity domains.

View Article and Find Full Text PDF

Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.

View Article and Find Full Text PDF

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination.

Chemosphere

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process.

View Article and Find Full Text PDF

For effective exercise prescription for patients with cardiovascular disease, it is important to determine the target heart rate at the level of the anaerobic threshold (AT-HR). The AT-HR is mainly determined by cardiopulmonary exercise testing (CPET). The aim of this study is to develop a machine learning (ML) model to predict the AT-HR solely from non-exercise clinical features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!