The sensitivity of the posterior crossvein in the pupal wing of Drosophila to reductions in the levels and range of BMP signaling has been used to isolate and characterize novel regulators of this pathway. We show here that crossveinless d (cv-d) mutations, which disrupt BMP signaling during the development of the posterior crossvein, mutate a lipoprotein that is similar to the vitellogenins that comprise the major constituents of yolk in animal embryos. Cv-d is made in the liver-like fat body and other tissues, and can diffuse into the pupal wing via the hemolymph. Cv-d binds to the BMPs Dpp and Gbb through its Vg domain, and to heparan sulfate proteoglycans, which are well-known for their role in BMP movement and accumulation in the wing. Cv-d acts over a long range in vivo, and does not have BMP co-receptor-like activity in vitro. We suggest that, instead, it affects the range of BMP movement in the pupal wing, probably as part of a lipid-BMP-lipoprotein complex, similar to the role proposed for the apolipophorin lipid transport proteins in Hedgehog and Wnt movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357910PMC
http://dx.doi.org/10.1242/dev.073817DOI Listing

Publication Analysis

Top Keywords

bmp signaling
12
pupal wing
12
binds bmps
8
posterior crossvein
8
range bmp
8
bmp movement
8
bmp
6
wing
5
crossveinless vitellogenin-like
4
vitellogenin-like lipoprotein
4

Similar Publications

Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.

View Article and Find Full Text PDF

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration.

Stem Cells Int

December 2024

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

Article Synopsis
  • Dental pulp stem cells (DPSCs) show promise for muscle injury repair, but their ability to differentiate into muscle cells is currently limited.
  • Treating DPSCs with Noggin, which inhibits bone morphogenetic protein (BMP) signals, enhances myogenic differentiation, increases myogenic markers, and generates satellite-like cells, improving muscle regeneration.
  • Implanting Noggin-treated DPSCs in a mouse model of muscle loss resulted in significant reductions in defect size and scar tissue, indicating that BMP/Smad signaling regulation by Noggin effectively promotes muscle repair.
View Article and Find Full Text PDF

Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:

Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA.

View Article and Find Full Text PDF

Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning.

Nat Commun

January 2025

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!