Raman spectra and images of a living L929 (NCTC) cell have been measured with 532 nm excitation. Both reduced and oxidized forms of cytochromes b and c (cyt b and cyt c) have been observed in situ without any pretreatment. The redox states of cyts b and c have been assessed quantitatively with a spectral analysis. It has been found that reduced cyt c is more abundant than oxidized cyt c, while oxidized cyt b is slightly more abundant than reduced cyt b in a living cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201200042 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Pulsatile ion transport facilitates the adjusted transfer of substances, meeting the requirements for the gradient and timed separation of multiple components in membrane processes. Responsive nanofiltration membranes are thus currently receiving widespread attention but face limitations due to their narrow performance adjustment range. Herein, hydroxyl functional groups were introduced into electrically responsive nanofiltration membranes to broaden the adjustment range of separation performance through a combination of pore size sieving and functional group interactions, resulting in a greater change in rejection and flux compared to the original membrane.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.
Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:
Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China. Electronic address:
Emerging of the lattice oxygen mechanism (LOM) provides a new opportunity for enhancing oxygen evolution reaction (OER) activity. However, its stability suffers from metal cation dissolution and lattice oxygen anionic redox chemistry. In this paper, carbon dots (CDs)-modified nickel-iron MOF (Metal-Organic Framework) nanosheets (NiFe-BDC/CDs) were prepared for efficient OER electrocatalysis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!