Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traumatic axonal injury (TAI) plays a major role in the development of neurological impairments after traumatic brain injury (TBI), but it is commonly difficult to evaluate it precisely and early with conventional histological biomarkers, especially when the patients experience short-term survival after TBI. Diffusion tensor imaging (DTI) has shown some promise in detecting TAI, but longitudinal studies on the compromised white matter with DTI at early time points (≤72 h) following impact acceleration TBI are still absent. In the present study, rats were subjected to the Marmarou model and imaged with DTI at 3, 12, 24, and 72 h (n = 5 each) post-injury. Using a region-of-interest-based approach, the regions of interest including the corpus callosum, bilateral external capsule, internal capsule, and pyramidal tract were studied. Two DTI parameters, fraction anisotropy and axial diffusivity, were significantly reduced from 3 to 72 h in each region after trauma, corresponding to the gradient of axonal damage demonstrated by immunohistochemical staining of β-amyloid precursor protein and neurofilament light chain. Remarkably, DTI changes predicted the approximate time in the acute phase following TBI. These results indicate that the temporal profiles of diffusion parameters in DTI may be able to provide a tool for early diagnosis of TAI following impact acceleration TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-012-0712-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!