AI Article Synopsis

  • The process of translation, which is energy-intensive, is regulated by the mTOR signaling pathway, particularly affecting the eIF4F complex, and disrupting mTOR can lead to cancer and influence chemotherapy effectiveness.
  • The study presents a new RNAi approach alongside pharmacological methods to explore the role of eIF4F in tumors initiated by Myc, discovering that high Myc levels correlate with unregulated eIF4F activity in early lymphoma development.
  • Inhibition of eIF4F proves to be particularly lethal for Myc-overexpressing pre-malignant cells, slowing down tumor formation, while its suppression in normal regenerating cells is tolerated and reversible, making eIF4F a promising target for cancer treatment.

Article Abstract

The energetically demanding process of translation is linked to multiple signaling events through mTOR-mediated regulation of eukaryotic initiation factor (eIF)4F complex assembly. Disrupting mTOR constraints on eIF4F activity can be oncogenic and alter chemotherapy response, making eIF4F an attractive antineoplastic target. Here, we combine a newly developed inducible RNAi platform and pharmacological targeting of eIF4F activity to define a critical role for endogenous eIF4F in Myc-dependent tumor initiation. We find elevated Myc levels are associated with deregulated eIF4F activity in the prelymphomatous stage of the Eμ-Myc lymphoma model. Inhibition of eIF4F is synthetic lethal with elevated Myc in premalignant pre-B/B cells resulting in reduced numbers of cycling pre-B/B cells and delayed tumor onset. At the organismal level, eIF4F suppression affected a subset of normal regenerating cells, but this was well tolerated and rapidly and completely reversible. Therefore, eIF4F is a key Myc client that represents a tumor-specific vulnerability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346676PMC
http://dx.doi.org/10.1016/j.celrep.2012.02.010DOI Listing

Publication Analysis

Top Keywords

eif4f activity
12
eif4f
10
synthetic lethal
8
eif4f complex
8
elevated myc
8
pre-b/b cells
8
targeting synthetic
4
lethal interactions
4
myc
4
interactions myc
4

Similar Publications

Heterogeneous nuclear ribonucleoprotein C promotes non-small cell lung cancer progression by enhancing XB130 mRNA stability and translation.

Cancer Cell Int

January 2025

Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.

Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Timely translation of maternal mRNA is crucial for oocyte maturation and embryonic development; PGC7 is identified as a key maternal factor in this process.
  • PGC7 maintains AKT1 activity and promotes the phosphorylation of the translation inhibitor YBX1, crucial for maternal mRNA translation.
  • The study reveals PGC7’s essential role in regulating the PGC7-AKT1-YBX1 axis, leading to enhanced translation of important maternal proteins like Cyclin B1 and YAP1 in mammalian oocytes.
View Article and Find Full Text PDF

During translation initiation, mRNA molecules must be identified and activated for loading into a ribosome. In this rate-limiting step, the heterotrimeric protein eukaryotic initiation factor eIF4F must recognize and productively interact with the 7-methylguanosine cap at the 5' end of the mRNA and subsequently activate the message. Despite its fundamental, regulatory role in gene expression, the molecular events underlying cap recognition and mRNA activation remain unclear.

View Article and Find Full Text PDF

Elevated expression of components of eIF4F translation initiation complex has been documented in cancer, resulting in enhanced translation of mRNAs encoding pro-tumorigenic factors, including oncogenic proteins. We previously identified SBI-756, a small molecule that interferes with the eIF4F assembly and overcomes melanoma resistance to BRAF inhibitors. SBI-756 enhanced anti-tumor immunity in pancreatic cancer and was effective in the treatment of diffuse large B cell lymphoma.

View Article and Find Full Text PDF

The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!