RFLP analysis of cry1 and cry2 genes of Bacillus thuringiensis isolates from India.

J Microbiol Biotechnol

Department of Microbiology and Biotechnology Center, The M.S. University of Baroda, Vadodara, Gujarat, India.

Published: June 2012

The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1111.11046DOI Listing

Publication Analysis

Top Keywords

cry2 genes
20
cry1a genes
20
genes
18
rflp analysis
12
cry1 genes
12
isolates regions
12
genes isolates
12
novel cry2
12
cry2 gene
12
isolates
10

Similar Publications

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Chronic Dexamethasone Disturbs the Circadian Rhythm of Melatonin and Clock Genes in Goats.

Animals (Basel)

January 2025

Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Article Synopsis
  • Dex, a drug used for its immunosuppressive and anti-inflammatory effects, disrupts melatonin secretion and biological clock gene expression in goats.
  • After 21 days of Dex treatment, goats showed significantly lower melatonin levels in both plasma and colon, as well as decreased expression of AANAT, a key enzyme for melatonin synthesis.
  • The circadian rhythms of several clock genes were disrupted in the Dex group, along with notable changes in CLOCK and BMAL1 protein levels, indicating that chronic Dex exposure affects biological rhythm regulation.
View Article and Find Full Text PDF
Article Synopsis
  • The review summarizes long-term research by the Saint-Petersburg Institute of Bioregulation and Gerontology on the biological activity of peptide bioregulators and compares findings from domestic and international studies.
  • Russian scientists have taken the lead in using buccal epithelium as a diagnostic marker for age-related diseases, highlighting their significant contributions in this field.
  • The research reveals that peptides from the epiphysis can enhance melatonin secretion and influence circadian rhythms in the elderly by regulating gene expression and reducing harmful protein synthesis, suggesting their potential as therapeutic agents for age-related issues.
View Article and Find Full Text PDF

Polystyrene microplastics induce depression-like behavior in zebrafish via neuroinflammation and circadian rhythm disruption.

Sci Total Environ

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Polystyrene microplastics (PS-MPs) are widespread pollutants in aquatic environments that accumulate in various organs, including the brain, raising concerns about their neurotoxic effects. This study exposed zebrafish to environmentally relevant concentrations (25 and 250 μg/L) of PS-MPs for 40 days to investigate their impact on neurobehavior and underlying mechanisms. Results revealed that PS-MPs induced depression-like behaviors in zebrafish, characterized by reduced exploration, decreased locomotor activity, and altered social interaction.

View Article and Find Full Text PDF

Background: Phosphorylation-dephosphorylation is one of the most common and critical cellular activities. It is essential for cell cycle control and leads to large changes in protein conformation, which can alter protein function and coordinate multiple functions such as cell metabolism, gene transcription and translation, signaling, growth, differentiation, and apoptosis. Alterations in the phosphorylated proteome have been shown in many cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!