Salt appetite is a goal-directed behavior in which salt-deprived animals ingest high salt concentrations that they otherwise find aversive. Because forebrain areas such as the lateral hypothalamus (LH), central amygdala (CeA), and nucleus accumbens (NAc) are known to play an important role in this behavior, we recorded from these areas while water-deprived (WD) and salt-deprived (SD) rats performed a two-bottle choice test between 0.5 M salt (NaCl) and 0.4 M sucrose. In the SD state, the preference ratio for high molar salt markedly increased. Electrophysiological recordings analyzed with respect to the onset of licking clusters revealed the presence of both excitatory and inhibitory neuronal responses during salt and/or sucrose consumption. In the NAc, putative medium spiny neurons and tonically active neurons exhibited excitatory and inhibitory responses. In all areas, compared with those recorded during the WD state, neurons recorded during the SD state showed an increase in the percentage of salt-evoked excitatory responses and a decrease in the percentage of sucrose-evoked inhibitory responses, suggesting that a subset of the neuronal population in these areas codes for the increased motivational and/or hedonic value of the salt solution. In addition, in the SD state, the firing of excitatory neurons in LH and CeA became more synchronized, indicating a greater functional connectivity between salt-responsive neurons in these areas. We propose that plastic changes in the feeding-related neuronal populations of these forebrain areas arise when changes in metabolic state alter the hedonic and motivational value of a particular taste stimulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424074PMC
http://dx.doi.org/10.1152/jn.00236.2012DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
8
lateral hypothalamus
8
hypothalamus central
8
central amygdala
8
forebrain areas
8
excitatory inhibitory
8
inhibitory responses
8
recorded state
8
salt
7
areas
6

Similar Publications

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.

View Article and Find Full Text PDF

Opioid reward and deep brain stimulation of the lateral hypothalamic area.

Vitam Horm

January 2025

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience.

View Article and Find Full Text PDF

Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved.

View Article and Find Full Text PDF

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!