Background: Individuals with diabetes have a higher risk of falls and fall-related injuries. People with diabetes often develop peripheral neuropathy (DPN) as well as nerve damage throughout the body. In particular, reduced lower extremity proprioception due to DPN may cause a misjudgment of foot position and thus increase the risk of fall.
Objective: An innovative virtual obstacle-crossing paradigm using wearable sensors was developed in an attempt to assess lower extremity position perception damage due to DPN.
Methods: 67 participants (age 55.4 ± 8.9, BMI 28.1 ± 5.8) including diabetics with and without DPN as well as aged-matched healthy controls were recruited. Severity of neuropathy was quantified using a vibratory perception threshold (VPT) test. The ability of perception of lower extremity was quantified by measuring obstacle-crossing success rate (OCSR), toe-obstacle clearance (TOC), and reaction time (T(R)) while crossing a series of virtual obstacles with heights at 10% and 20% of the subject's leg length.
Results: No significant difference was found between groups for age and BMI. The data revealed that DPN subjects had a significantly lower OCSR compared to diabetics with no neuropathy and controls at an obstacle size of 10% of leg length (p < 0.05). DPN subjects also demonstrated longer T(R) compared to other groups and for both obstacle sizes. In addition, TOC was reduced in neuropathy groups. Interestingly, a significant correlation between T(R) and VPT (r = 0.5, p < 10(-3)) was observed indicating a delay in reaction with increasing neuropathy severity. The delay becomes more pronounced by increasing the size of the obstacle. Using a regression model suggests that the change in T(R) between obstacle sizes of 10% and 20% of leg length is the most sensitive predictor for neuropathy severity with an odds ratio of 2.70 (p = 0.02).
Conclusion: The findings demonstrate proof of a concept of virtual-reality application as a promising method for objective assessment of neuropathy severity, however a further study is warranted to establish a stronger relationship between the measured parameters and neuropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955209 | PMC |
http://dx.doi.org/10.1159/000338095 | DOI Listing |
Front Physiol
January 2025
Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China.
Background: Low load resistance training with blood flow restriction (LL-BFRT) has been shown to improve muscle strength and hypertrophic function. The effect of LL-BFRT on lower extremity muscle improvement has been widely discussed. However, no studies have discussed the effect of this training method on the upper extremity muscles until now.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Physical Therapy, Louisiana State University Health Sciences Center- New Orleans, New Orleans, LA, United States.
Introduction: The purpose of this study was to investigate the relationships between a Power Leg Press test (PLP) with walking capacity and self-reported performance and participation in individuals with Cerebral Palsy (CP), and to compare the strength of the associations between two power tests (PLP and isokinetic (IsoK)) with walking capacity.
Methods: Ambulatory individuals with CP (n = 33; age 17.89 ± 7.
Cureus
December 2024
Department of Anaesthesiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND.
Introduction Spinal anesthesia, a commonly used technique for lower abdominal, pelvic, and lower extremity surgeries, involves injecting a local anesthetic into the subarachnoid space to temporarily block sensory, motor, and sympathetic nerves. Despite its high success rate, the failure of spinal anesthesia, which can lead to adverse patient outcomes, remains a concern. The failure rate varies widely, from 1% to 17%, influenced by factors such as technical challenges, patient anatomy, and practitioner experience.
View Article and Find Full Text PDFCureus
December 2024
Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Fukuoka, JPN.
Background: Several studies have suggested that approximately 10 hours of inactivity can reduce motor performance. Specifically, restricted lower limb movement may impair postural stability, subsequently increasing the incidence of falls. However, the relationship between postural sway and its related factors remains unclear.
View Article and Find Full Text PDFEpilepsy Behav Rep
March 2025
Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States.
Dynein Cytoplasmic 1 Heavy chain 1 (-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!