NMR in drug discovery on membrane proteins.

Future Med Chem

Institute for Organic Chemistry & Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, D-60439 Frankfurt am Main, Germany.

Published: May 2012

Drug discovery on membrane proteins is still a difficult task, despite the recognized importance of membrane proteins as drug targets. Here, we present an overview of NMR methods available for structure-based drug design on membrane proteins. NMR spectroscopy is capable of identifying potential binders in screening and defining their relative binding constants, binding stoichiometry, conformation in the binding pocket and the relative binding orientation for binders of different series. Examples are given in the review highlighting the potential of NMR spectroscopy for future progress in drug discovery on membrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.4155/fmc.12.46DOI Listing

Publication Analysis

Top Keywords

membrane proteins
20
drug discovery
12
discovery membrane
12
proteins drug
8
nmr spectroscopy
8
relative binding
8
membrane
5
proteins
5
nmr
4
nmr drug
4

Similar Publications

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!