[Comparison of three dynamic algorithms of electrical impedance tomography based on simulation study].

Zhongguo Yi Liao Qi Xie Za Zhi

Department of Medical Engineering, First Affiliated Hospital, General Hospital of PLA, Beijing, 100048.

Published: January 2012

Three algorithms of electrical impedance tomography (EIT) are studied in this paper. The image resolution, anti-noise property and computation rapidity of the reconstruction algorithms are compared. As a result, it shows that back-projection algorithm has good anti-noise property, that NOSER algorithm generates images with good resolution, and that sensitivity matrix algorithm has moderate property.

Download full-text PDF

Source

Publication Analysis

Top Keywords

algorithms electrical
8
electrical impedance
8
impedance tomography
8
anti-noise property
8
[comparison three
4
three dynamic
4
dynamic algorithms
4
tomography based
4
based simulation
4
simulation study]
4

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters.

View Article and Find Full Text PDF

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding.

View Article and Find Full Text PDF

Partial directed coherence analysis of resting-state EEG signals for alcohol use disorder detection using machine learning.

Front Neurosci

January 2025

Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Introduction: Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!