A current major obstacle is that no reliable screening markers exist to detect pregnancies at risk for preeclampsia. Quantitative proteomic analysis employing isobaric labelling (iTRAQ) has been suggested to be suitable for the detection of potential plasma biomarkers, a feature we recently verified in analysis of pregnancies with Down syndrome foetuses. We have now examined whether this approach could yield biomarkers to screen pregnancies at risk for preeclampsia. In our study, we used maternal plasma samples obtained at 12 weeks of gestation, six from women who subsequently developed preeclampsia and six with uncomplicated deliveries. In our analysis, we observed elevations in 10 proteins out of 64 proteins in the preeclampsia study group when compared to the healthy control group. These proteins included clusterin, fibrinogen, fibronectin, and angiotensinogen, increased levels of which are known to be associated with preeclampsia. An elevation in the immune-modulatory molecule, galectin 3 binding protein, was also noted. Our pilot study, therefore, indicates that quantitative proteomic iTRAQ analysis could be a useful tool for the detection of new preeclampsia screening markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335425 | PMC |
http://dx.doi.org/10.1155/2012/305964 | DOI Listing |
ACS Chem Biol
January 2025
Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.
View Article and Find Full Text PDFQuorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!