The scavenger decapping enzyme Dcs1 has been shown to facilitate the activity of the cytoplasmic 5'-3' exoribonuclease Xrn1 in eukaryotes. Dcs1 has also been shown to be required for growth in glycerol medium. We therefore wondered whether the capacity to activate RNA degradation could account for its requirement for growth on this carbon source. Indeed, a catalytic mutant of Xrn1 is also unable to grow in glycerol medium, and removal of the nuclear localization signal of Rat1, the nuclear homolog of Xrn1, restores glycerol growth. A cytoplasmic 5'-3' exoribonuclease activity is therefore essential for yeast growth on glycerol, suggesting that Xrn1 activation by Dcs1 is physiologically important. In fact, Xrn1 is essentially inactive in the absence of Dcs1 in vivo. We analyzed the role of Dcs1 in the control of exoribonuclease activity in vitro and propose that Dcs1 is a specific cofactor of Xrn1. Dcs1 does not stimulate the activity of other 5'-3' exoribonucleases, such as Rat1, in vitro. We demonstrate that Dcs1 improves the apparent affinity of Xrn1 for RNA and that Xrn1 and Dcs1 can form a complex in vitro. We examined the biological significance of this regulation by performing 2D protein gel analysis. We observed that a set of proteins showing decreased levels in a DCS deletion strain, some essential for respiration, are also systematically decreased in an XRN1 deletion mutant. Therefore, we propose that the activation of Xrn1 by Dcs1 is important for respiration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361377 | PMC |
http://dx.doi.org/10.1073/pnas.1120090109 | DOI Listing |
PLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Respiratory and Critical Care Medicine, Wuyi County First People's Hospital, Jinhua, Zhejiang, China.
Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.
View Article and Find Full Text PDFStructure
November 2024
CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia. Electronic address:
The 5'-3' exoribonuclease Xrn2, known as Rat1 in yeasts, terminates mRNA transcription by RNA polymerase II (RNAPII). In the torpedo model of termination, the activity of Xrn2/Rat1 is enhanced by Rai1, which is recruited to the termination site by Rtt103, an adaptor protein binding to the RNAPII C-terminal domain (CTD). The overall architecture of the Xrn2/Rat1-Rai1-Rtt103 complex remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!