In the rodent cerebellum, pharmacological activation of mGluR4 acutely depresses excitatory synaptic transmission at parallel fibre–Purkinje cell synapses. This depression involves the inhibition of presynaptic calcium (Ca2+) influx that ultimately controls glutamate release. In this study, we investigate the molecular basis of mGluR4-mediated inhibition of presynaptic Ca2+ transients. Our results demonstrate that the mGluR4 effect does not depend on selective inhibition of a specific type of presynaptic voltage-gated Ca2+ channel, but rather involves modulation of all classes of Ca2+ channels present in the presynaptic terminals. In addition, this inhibitory effect does not involve the activation of G protein-activated inwardly rectifying potassium channels, TEA-sensitive potassium channels or two-pore-domain potassium channels. Furthermore, this inhibition does not require pertussis toxin-sensitive G proteins, and is independent of any effect on adenylyl cyclases, protein kinase A, mitogen-activated protein kinases or phosphoinositol-3 kinase activity. Interestingly we found that mGluR4 inhibition of presynaptic Ca2+ influx employs a newly defined signalling pathway, notably that involving the activation of phospholipase C and ultimately protein kinase C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406385 | PMC |
http://dx.doi.org/10.1113/jphysiol.2012.232074 | DOI Listing |
Eur J Neurosci
January 2025
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States.
Treatment-resistant depression responds quickly to ketamine. As an -methyl-d-aspartate receptor (NMDAR) antagonist, ketamine may affect prefrontal cortex (PFC) neurons. Recent investigations reveal that the ()-enantiomer is the most effective and least abuseable antidepressant.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
Bone cancer pain (BCP) is a common clinical problem in cancer patients. The plasticity of excitatory neurons within the spinal dorsal horn plays a significant role in the development of BCP. This study explored the roles of absent in melanoma 2 (AIM2) and stimulator of interferon gene (STING) in BCP using male C57BL/6J mice.
View Article and Find Full Text PDFEndocrinology
November 2024
Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!