Session III: Mechanisms of age-related cognitive change and targets for intervention: inflammatory, oxidative, and metabolic processes.

J Gerontol A Biol Sci Med Sci

Department of Psychiatry and Behavioral Sciences, University of Washington, Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound, Seattle, USA.

Published: June 2012

There is increasing evidence from basic science and human epidemiological studies that inflammation, oxidative stress, and metabolic abnormalities are associated with age-related cognitive decline and impairment. This article summarizes selected research on these topics presented at the Cognitive Aging Summit II. Speakers in this session presented evidence highlighting the roles of these processes and pathways on age-related cognitive decline, pointing to possible targets for intervention in nondemented older adults. Specific areas discussed included age differences in the production of cytokines following injury or infection, mechanisms underlying oxidative stress-induced changes in memory consolidation, insulin effects on brain signaling and memory, and the association between metabolic syndrome and cognitive decline in older adults. These presentations emphasize advances in our understanding of mechanisms and modifiers of age-related cognitive decline and provide insights into potential targets to promote cognitive health in older adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536547PMC
http://dx.doi.org/10.1093/gerona/gls112DOI Listing

Publication Analysis

Top Keywords

age-related cognitive
16
cognitive decline
16
older adults
12
targets intervention
8
cognitive
7
session iii
4
iii mechanisms
4
age-related
4
mechanisms age-related
4
cognitive change
4

Similar Publications

Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.

View Article and Find Full Text PDF

Age-related arterial stiffness increases pulsatility that reaches the cerebral microcirculation, compromises cerebrovascular health and lead to cognitive decline. The presence of cardiovascular risk factors (CVRFs) such as high blood pressure can exacerbate this effect. Despite extensive research on the impact of antihypertensive treatments on reducing arterial stiffness, little is known about the impact of antihypertensive treatments on pulsatility in cerebral microcirculation.

View Article and Find Full Text PDF

Background: In addition to its important roles in blood coagulation and bone formation, vitamin K (VK) contributes to brain function. Low dietary VK intake, which is common among older adults, is associated with age-related cognitive impairment.

Objective: To elucidate the biological mechanisms underlying VK's effects on cognition, we investigated the effects of low VK (LVK) intake on cognition in C57BL/6 mice.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear.

Aims Of The Study: This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) in Cerebrovascular Aging: Focus on the Pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and Treatment Prospects.

Ageing Res Rev

January 2025

Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK. Electronic address:

Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!